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I Motivation p3/38 

• We denote the initial time (today) by t0 ≡ 0. We consider a stock whose price, at time t, is 
S(t). We consider a time interval [t0, T ] which is partitioned into N time periods (not 
necessarily equal in length) whose end-points are tj, j = 1, 2, ..., N , where 
0 ≡ t0 < t1 < ... < tj−1 < tj < ... < tN ≡ T . 

• What difference does it make if realised variance is measured by log changes squared (i.e. PN 
i=1(log(S(ti)/S(ti−1)))

2) or by proportional differences squared (i.e. PN 
i=1((S(ti)/S(ti−1)) − 1)2)? 

• What impact does monitoring frequency (i.e. the value of N above) have on the measurement 
of realised variance? 

• What impact do jumps in the underlying stock price have on the measurement of realised 
variance? 

• Building on Broadie and Jain (2008), Carr and Lee (2009) and Hong (2004), we will try to 
answer these questions. 
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I Motivation 2 p4/38 

• Our results have two important applications: 

• 1./ The pricing (under an equivalent martingale measure (EMM) Q) of variance swaps which PN pay (log(S(ti)/S(ti−1)))
2 (which is how the payoffs are usually defined in practice) andi=1 PNof proportional variance swaps which pay ((S(ti)/S(ti−1)) − 1)2 at maturity T . Ini=1 

particular, we consider the case when N is infinite (continuously monitored) and the case 
when N is finite (discretely monitored - as they must always be in practice). 

• 2./ Given observations of S(ti) for times ti, i = 1, 2, ..., N (from historical data under the 
real-world physical measure P), what can we say about the process which generated this data? 
We are thinking, in particular, of high-frequency data (at least several, perhaps, a few hundred 
observations per day). 
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I Motivation 3 p5/38 

• For the first two-thirds of my talk, I will focus on variance swaps and model stock price 
dynamics under an EMM Q. 

• Nearly all papers on variance swaps have focussed on the log-contract replication approach 
(eg. Neuberger (1990), Dupire (1993), Derman et al. (1999)). 

• However, there is a completely different approach (see Hong (2004) and Broadie and Jain 
(2008)) which utilises characteristic functions. We build upon this approach. However, firstly, 
we discuss the assumed stock price dynamics. 
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I Notation and model setup p6/38 

• We construct the stock price process by assuming that the log of the stock price is a 
time-changed Lévy process (allows a very generic process which includes (nearly) all models 
seen in the literature). 

• We have a Lévy process (eg Brownian motion, Kou (2002) jump-diffusion, Variance Gamma 
or CGMY) denoted by Xt, satisfying Xt0 = 0. We assume that we mean-correct Xt so that 
exp(Xt) is a (non-constant) martingale (under Q) - with respect to the natural filtration 
generated by Xt i.e. that EQ[exp(Xt)] = exp(Xt0) = 1 for all t ≥ t0.t0 

• Lévy-Khinchin formula implies we can write the (mean-corrected) characteristic exponent 
ψX (z) (defined via EQ[exp(iuXt)] ≡ exp(−(t − t0)ψX (u))) in the form:t0 Z ∞ 

2−ψX (z) = − 
1 
σ2(z + iz) + (exp(izx) − 1 − iz(exp(x) − 1))ν(dx). 
2 −∞ 

0 
For future reference, 0 denotes differentiation i.e. ψX (z) ≡ ∂ψX (z)/∂z, 
00 000 

ψX (z) ≡ ∂2ψX (z)/∂z
2 and ψX (z) ≡ ∂3ψX (z)/∂z

3 . 

• For the case of Brownian motion, “Xt = −1σ2t + σW (t) where W (t) is standard (driftless)2 
Brownian motion”. 
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I Notation and model setup 2 p7/38 

• We assume that we have a non-decreasing, continuous time-change process denoted by Yt. We 
normalise so that Yt0 = t0 ≡ 0. 

• In general, Yt may be correlated with Xt. R t• Our assumption, for example, allows Yt to be of the form Yt = ysds where the activity ratet0 
yt (which must be non-negative) follows, for example, a Heston (1993) square-root process, a 
non-Gaussian OU process (Barndorff-Nielsen and Shephard (2001)) or it could follow the 
Heston (1993) plus jumps process of Duffie et al. (2000). In the latter two cases, yt is 
discontinuous but Yt is always continuous. 

• (The time-change will allow us to model stochastic volatility / leverage / volatility clustering 
type effects). 
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I Stock price process p8/38 

• We time-change the Lévy process Xt by Yt to get a process XYt, with XYt0 
= 0. 

• The stock price S(t), at time t, is assumed to have the following dynamics (under Q): Z t 
S(t) = S(t0) exp( (r(s) − q(s))ds + XYt). 

t0 

• Here, r(t) is the risk-free interest-rate and q(t) is the dividend yield (assumed finite and 
deterministic), at time t. 

• To lighten notation, I will henceforth write equations as if r(t) − q(t) ≡ 0 for all t (or 
equivalently work with forward or future prices - the paper considers the general case). Hence, 
S(t) = S(t0) exp(XYt). 
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I Stock price process 2 p9/38 

• We now define, for all t ≥ t0: 

Ξt(u) ≡ exp(iuXYt + YtψX (u)). 

Since the mean-corrected characteristic exponent ψX (u) is defined via: 
EQ[exp(iuXt)] = exp(−(t − t0)ψX (u)), then exp(iuXt + (t − t0)ψX (u)) is a martingale, undert0 

Q, with respect to the natural filtration generated by Xt. 

• By a “randomising time” (Optional Stopping Theorem) argument, for any u, Ξt(u) is a 
martingale, under Q, with respect to the filtration generated by Ft ≡ {Xt ∪ Yt}. 

• In particular, 

Ξtj (u)EQ [ ] = EQ [exp(iu(XYtj 
) + (Ytj − Ytj−1)ψX (u))] = 1.tj−1 tj−1 

− XYtj−1(u)Ξtj−1 
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I Extended characteristic function p10/38 

• We now introduce what we call the joint extended characteristic function Φ(z; j), which we 
define, for each j, j = 1, . . . , N , by: 

S(tj)EQΦ(z; j) ≡ t0
[exp(iz log )] = EQ 

t0
[exp(iz(XYtj 

− XYtj−1 
))]

S(tj−1) 

= EQ 
t0
[exp(iz(XYtj 

− XYtj−1 
) + (Ytj − Ytj−1)ψX (z)) exp(−(Ytj − Ytj−1)ψX (z))] 

Ξtj (z) 
= EQ[EQ [ exp(−(Ytj )ψX (z))]].t0 tj−1 (z) 

− Ytj−1Ξtj−1 

• (Note as an aside, Φ(z; j) is “a kind of forward characteristic function”. One can compute 
Φ(z; j), for cases of interest, via conditioning arguments and by using results in Carr and Wu 
(2004) and Duffie et al. (2000), so we will say nothing more about this.) 
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I Proportional variance swaps p11/38 

• We note that the joint extended characteristic function Φ(z; j) allows us to immediately 
evaluate the price of a discretely monitored proportional variance swap. We let iz = 2 in the 
equation for Φ(z; j), then sum over j and simplify. 

• ⇒: The price PVS(t0, T,N), at time t0, of a (discretely monitored) proportional variance PNswap (paying ((S(ti)/S(ti−1)) − 1)2 at time T ) is:i=1 �X ��N � 
PVS(t0, T,N) = P (t0, T ) Φ(−2i; j) − 1 . 

j=1 

Here, P (t0, T ) is the price of a zero-coupon bond, at time t0, that matures at time T . 

• We will examine the limit as N →∞ of this equation later. 
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I Log-forward-contracts p12/38 

• Now we differentiate Φ(z; j) with respect to z and divide by i: 

1 ∂Φ(z; j) S(tj) S(tj)EQ= [log exp(iz log )]t0i ∂z S(tj−1) S(tj−1) 
Ξtj (z) 

= EQ[EQ [ exp(−(Ytj − Ytj−1)ψX (z))t0 tj−1 � 
(z) 

0 ��Ξtj−1� 
$(j)(iz) + (XYtj 

− XYtj−1 
) − iψX (z)(Ytj − Ytj−1) ]], where 

0 
$(j)(iz) ≡ iψX (z)(Ytj − Ytj−1). 

• It is now straightforward to value log-forward-contracts (paying log(S(tN )/S(t0)) at time T ). 
We set iz = 0, then we sum from j = 1 to N and then simplify. The price LFC(t0, T ), at time 
t0, of a log-forward-contract is: 

LFC(t0, T ) = P (t0, T )iψX 

0 
(0)EQ ] ≡ P (t0, T )mXEQ ].t0

[YT − Yt0 t0
[YT − Yt0 

0 
Note mX defined by mX ≡ iψX (0) is real. 
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I Variance swaps p13/38 

• We differentiate again with respect to z and again divide by i: 

∂2Φ(z; j)− 
∂z2 

= 
S(tj) S(tj)EQ[(log )2 exp(iz log )]t0 S(tj−1) S(tj−1)

= 
(z)ΞtjEQ[EQ [ exp(−(Ytjt0 tj−1 (z)Ξtj−1� 

)ψX (z))− Ytj−1

$(j) 2(iz) n � 0 � o 
+ 2$(j)(iz) (XYtj 

) − iψX (z)(Ytj− XYtj−1 
)− Ytj−1� 0 �2 00 

+ (XYtj 
00 

) − iψX (z)(Ytj− XYtj−1 � 
)− Ytj−1 − ψX (z)(Ytj )− Ytj−1

+ψX (z)(Ytj )− Ytj−1 ]]. 

. 
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I Variance swaps 2 p14/38 

• The price, at time t0, of a variance swap VS(t0, T,N) can be obtained by setting iz = 0, 
summing from j = 1 to N and simplifying: The price VS(t0, T,N) is: 

VS(t0, T,N) 
NX 

= P (t0, T )EQ[ EQ [$(j) 2(0)]]t0 tj−1 
j=1 

NX � � 
+ P (t0, T )EQ 

t0
[ EQ 

tj−1
[2mX (Ytj − Ytj−1) (XYtj 

− XYtj−1 
) − mX (Ytj − Ytj−1) ]] 

j=1 

N 00 X 
+ P (t0, T )ψX (0)E

Q 
t0
[ (Ytj − Ytj−1)]. (1) 
j=1 

• Note that $(j)(0) is the drift of log of the stock price (over the time interval tj−1 to tj) (it is 
real and for Brownian motion and a deterministic time-change it is “(r − q − 1σ2)(tj − tj−1)”).2 

0 
• Here mX ≡ iψX (0) (note mX is real and for Browian motion it is “−1σ2”).2 

• Lets look at each of the three lines of equation (1) in turn. 
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I Variance swaps 3 p15/38 

• Again, VS(t0, T,N) 
NX 

= P (t0, T )EQ[ EQ [$(j) 2(0)]]t0 tj−1 
j=1 

NX � � 
+ P (t0, T )EQ 

t0
[ EQ 

tj−1
[2mX (Ytj − Ytj−1) (XYtj 

− XYtj−1 
) − mX (Ytj − Ytj−1) ]] 

j=1 

N 00 X 
+ P (t0, T )ψX (0)E

Q[ (Ytj )].t0 
− Ytj−1 

j=1 

• Note that, with a deterministic time-change, $(j) 2(0) is O(1/N 2). Broadie and Jain (2008) 
show that it is O(1/N 2) if the activity-rate of the time-change is Heston (1993). In the paper, 
we show that it is O(1/N 2) for “almost any” time-change. 

• Hence the first line is O(1/N) and → 0 as N →∞. 

• Since $(j)(0) is real, $(j) 2(0) is definitely non-negative and zero only if the drift of the log of 
the stock price is identically equal to zero. 
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I Variance swaps 4 p16/38 

• Again, the second line is: 

NX � � 
EQP (t0, T )EQ 

t0
[ tj−1

[2mX (Ytj − Ytj−1) (XYtj 
− XYtj−1 

) − mX (Ytj − Ytj−1) ]]. 
j=1 

• Note EQ 
tj−1
[(XYtj 

− XYtj−1 
) − mX (Ytj − Ytj−1)] ≡ 0 (by construction it is a martingale eg the 

whole term is standard Brownian motion). 

• Therefore, if Xt and Yt are independent, the second line is identically equal to zero. 

• mX is always negative (eg for Browian motion it is “−1σ2”). Therefore, if Xt and Yt are2 
negatively correlated, the second term is positive. 

• Results in Broadie and Jain (2008) show, for Heston (1993) that the (absolute value of the) 
second line is O(1/N). In the paper, we show that it is O(1/N) for any Lévy process and 
“almost any” time-change. 
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I Variance swaps 5 p17/38 

• Again, VS(t0, T,N) 
NX 

= P (t0, T )EQ[ EQ [$(j) 2(0)]]t0 tj−1 
j=1 X 

EQ+ P (t0, T )EQ 
t0
[ 
N

tj−1
[2mX (Ytj − Ytj−1) 

� 
(XYtj 

− XYtj−1 
) − mX (Ytj − Ytj−1) 

� 
]] 

j=1 

+ P (t0, T )ψX 

00 
(0)EQ[YT − Yt0].t0 PN• The term EQ 

t0
[ j=1(Ytj − Ytj−1)] = EQ 

t0
[YT − Yt0] due to a telescoping sum. 

• The third line is the price of the continuously monitored version of the variance swap. 
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I Variance swaps 6 p18/38 

• Again, VS(t0, T,N) 
NX 

= P (t0, T )EQ[ EQ [$(j) 2(0)]]t0 tj−1 
j=1 

NX � � 
+ P (t0, T )EQ 

t0
[ EQ 

tj−1
[2mX (Ytj − Ytj−1) (XYtj 

− XYtj−1 
) − mX (Ytj − Ytj−1) ]] 

j=1 

+ P (t0, T )ψX 

00 
(0)EQ[YT − Yt0].t0 

• The price of a (discretely monitored) variance swap is the sum of three terms: A non-negative 
“drift-related” term, a “covariance” term which is non-negative (respectively, zero) if 
Correl(Xt, Yt) is negative (respectively, zero) and the price of the continuously monitored 
version of the variance swap. 

• In particular, if the “covariance” term is non-positive, a discretely monitored variance swap is 
always worth than its continuously monitored counterpart. 

• Convergence is always O(1/N). 
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I Proportional variance swaps p19/38 

• We saw earlier that the price PVS(t0, T,N), at time t0, of a (discretely monitored) PNproportional variance swap (paying ((S(ti)/S(ti−1)) − 1)2 at time T ) is:i=1 � NX� �� 
PVS(t0, T,N) = P (t0, T ) Φ(−2i; j) − 1 . 

j=1 

• Hence: 
N�X� �� 

lim PVS(t0, T,N) = lim P (t0, T ) Φ(−2i; j) − 1 
N→∞ N→∞ 

j=1 

NX Ξtj (−2i) 
= P (t0, T ) lim EQ 

t0
[ (exp(−(Ytj − Ytj−1)ψX (−2i)) − 1)] 

N→∞ Ξtj−1(−2i)j=1 

= −P (t0, T )ψX (−2i)E
Q[YT − Yt0] + O(1/N).t0 

• Hence, the price of the continuously monitored version of the proportional variance swap is 
−P (t0, T )ψX (−2i)E

Q ].t0
[YT − Yt0 

• Convergence is also O(1/N). 
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I Proportional variance swaps 2 p20/38 

• From the previous slide, 

N� X � �� 
PVS(t0, T, N) = P (t0, T ) Φ(−2i; j) − 1 with 

j=1 

Φ(−2i; j) = 
(−2i)ΞtjEQ[ exp(−(Ytj )ψX (−2i))].− Ytj−1t0 (−2i)Ξtj−1

(k) (k)
Hence, it is clear (since ψX (−2i) < 0 eg. for Brownian motion ψX (−2i) = −σ2) that when 
Xt and Yt are positively correlated then the price of a discretely monitored proportional 
variance swap is higher than the price of the same discretely monitored proportional variance 
swap under the assumption that they are independent (the opposite way round to a variance 
swap). 

• Under the assumption of independence, a discretely monitored proportional variance swap is 
always worth at least as much as an otherwise identical continuously monitored proportional 
variance swap (the same way round as a variance swap). 
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I Summary so far p21/38 

• We have explicit expressions for the prices of variance swaps and proportional variance swaps 
(both discretely monitored and continuously monitored). Discretely monitored prices tend to 
their continuously monitored counterparts as O(1/N) (for both variance swaps and 
proportional variance swaps). 

• In the paper, we prove O(1/N) convergence is also true for discontinuous time-changes. 

• In the paper, we prove O(1/N) convergence is also true for gamma swaps, self-quantoed 
variance swaps and skewness swaps. 

• The prices of continuously monitored variance swaps and proportional variance swaps (and 
also gamma swaps and skewness swaps) do NOT depend upon Correl(Xt, Yt). 

• Can easily see dependence of discretely monitored versions of these swaps on Correl(Xt, Yt). 

• In particular, 

VS(t0, T,N) ≥ VS(t0, T, ∞) provided Correl(Xt, Yt) ≤ 0, 

(and a non-positive correlation seems most likely in practice). 
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I Variance swaps vs proportional variance swaps p22/38 

• The price of a continuously monitored proportional variance swap is: 
PVS(t0, T, ∞) = −P (t0, T )ψX (−2i)E

Q[YT − Yt0].t0 

• The price of a continuously monitored variance swap is: 

VS(t0, T, ∞) = P (t0, T )ψX 

00 
(0)EQ[YT − Yt0].t0 

• The price of a log-forward-contract is: 
LFC(t0, T ) = P (t0, T )iψX 

0 
(0)EQ 

t0
[YT − Yt0] ≡ P (t0, T )mX EQ 

t0
[YT − Yt0]. 

• Hence: 
00 

VS(t0, T, ∞) ψX (0) PVS(t0, T, ∞) −ψX (−2i) = , = . 
LFC(t0, T ) mX LFC(t0, T ) mX 

Carr and Lee (2009) have already proven the left-hand-side equation (i.e. for variance swaps 
(VS)) by a different method. In the paper, we show similar analogous results, not only for 
proportional variance swaps, but also for other types of variance derivatives. 

• Hence, given vanilla prices, can price variance swaps and proportional variance swaps 
independent of any assumption on Yt (and therefore robust to model (mis-)specification). 
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I Variance swaps vs proportional variance swaps 2 p23/38 

• For the case, when Xt is Brownian motion with volatility σ: 
00 00 000 

2We have: ψX (z) = σ2(z + iz)/2, mX = −σ2/2, ψX (0) = σ2 , ψX (−i) = σ2 , ψX (0) = 0 and 
ψX (−2i) = −σ2 . 

VS(t0, T, ∞) PVS(t0, T, ∞) 
= 2, = 2. 

−LFC(t0, T ) −LFC(t0, T ) 

• The left-hand-side equation restates Neuberger (1990), Dupire (1993) and Derman et al. 
(1999): 
The price of a variance swap equals (minus) two times the price of a log-forward-contract 
(with the assumption of continuous sample paths (i.e. the log of the stock price is 
time-changed Brownian motion)). 

• The right-hand-side equation says that it makes no difference if realised variance isPNmeasured by log changes squared (i.e. (log(S(ti)/S(ti−1)))
2) or by proportional i=1PNdifferences squared (i.e. ((S(ti)/S(ti−1)) − 1)2) when there are no jumps (i.e. i=1 

continuous sample paths) and when N = ∞ (i.e. continuously monitored). 
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I Variance swaps vs proportional variance swaps 3 p24/38 

• For the case, when Xt is a compound Poisson process with a fixed jump amplitude a (and 
with no diffusion component), then we have: 

VS(t0, T, ∞) 2a � � a 
= ≈ 2 1 − ,

−LFC(t0, T ) 
PVS(t0, T, ∞) 

(exp(a) − 1 − a) 
(exp(a) − 1)2 � 3 � 

2a 
= ≈ 2 1 + ,

−LFC(t0, T ) (exp(a) − 1 − a) 3 

where, in each part, the first term is exact and the second term is the expansion of the first 
term to leading order when |a| is small. 

• ⇒: The prices of variance swaps and proportional variance swaps have the opposite 
sensitivities to jumps (and the impact will be larger in magnitude (perhaps, twice as large) 
for proportional variance swaps). 

• The right-hand-side equation suggests that it will make a big difference if realised variance PNis measured by log changes squared (i.e. (log(S(ti)/S(ti−1)))
2) or by proportional i=1PNdifferences squared (i.e. ((S(ti)/S(ti−1)) − 1)2) when there are (large) jumps.i=1 
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I Numerical examples p25/38 

• We now consider some numerical examples. 

• We consider variance swaps and proportional variance swaps, with maturity T = 0.5, and with 
= 2(J−1)N (equally-spaced) monitoring times where N , for J = 1, 2, ..., 10. 

• We consider a generalised CGMY process (with a diffusion component) time-changed by a 
Heston (1993) activity rate (parameters from calibration to the market prices of vanilla 
options on the S & P500 stock index). 

• To see effect of drift and correlation: 

• We consider two possible choices, labelled (a) and (b) for the values of the interest-rate r(t) 
and the dividend yield q(t). In the first choice (a), r(t) = 0, q(t) = 0, for all t. In the second 
choice (b), r(t) = 0.065, q(t) = 0.015, for all t. 

• We consider three different combinations for the correlation ρ between the activity rate and 
the diffusion component of the CGMY process: Namely, ρ = −0.99, ρ = 0 and ρ = 0.99. 
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I Estimating parameters from historical data p28/38 

• Now lets consider the problem of estimating process parameters from historical data. 

• Either assume that we have structure-preserving risk-premia which means we have 
time-changed Lévy process dynamics under the real-world physical measure P and under Q 
(with, in general, different parameters). 

• Or simply regard estimating process parameters as a seperate problem. 

• Either way, we assume henceforth time-changed Lévy process dynamics under P. 
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I Quadratic variation p29/38 

• Suppose we are given stock prices S(tj) for times tj, for j = 1, 2, ..., N where N is large and is 
of the form N = LM , for integers L and M . 

• Let us identify L and M as follows: L is the total number of days on which we observe the 
stock prices and on each day we observe M prices (not necessarily at equal intervals). 

• The quadratic variation QV (`) of log of the stock price over the period from time t(`−1)M to 
time t`M (i.e. on the `th day) is defined as: 

N̂X 
QV (`) ≡ lim (log(S(un)/S(un−1)))

2 , 
N̂→∞ n=1 

for any sequence of partitions t(`−1)M ≡ u0 < u1 < u2 < ... < u ̂  < u ̂  withN−1 N ≡ t`M 

sup{un − un−1} → 0. 
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I Realised variance p30/38 

• Note that on the `th day, for each ` = 1, 2, ..., L, we can compute the realised variance 
R̃V (`, M) via: 

MX 
R̃V (`, M) ≡ (log(S(t(`−1)M+m)/S(t(`−1)M+m−1)))

2 . 
m=1 

˜• This (discrete) realised variance RV (`, M) is clearly a discrete approximation to the quadratic 
variation QV (`). 

• There is a central limit theorem type result (Barndorff-Nielsen and Shephard (2004)) that says 
˜that RV (`, M), for each ` = 1, ..., L, are (approximately) multi-variate normal provided M is 

not too small (say, M ≥ 15). 

• Recall M is the number of observations per day of the stock price. 
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I High-frequency data 1 p31/38 

• High-frequency data uses values of M that are large, for example, M equal to 288 (every 5 
minutes, 24 hours in a working day - Barndorff-Nielsen and Shephard (2004)) or sampling 
every 60 seconds (M = 480 for 8 hour working day) or every 10 seconds (M = 2880 for 8 hour 
working day) - Barndorff-Nielsen, Hanson, Lunde and Shephard (2008). 

• Good point: Large M seems to use more data - therefore better estimates?? 

• Bad point: Concern that market microstructure effects - eg minimum tick-size, indicative 
prices or actual transactions prices, illiquidity - distort the estimates if M is too large. 
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• Existing papers have attempted to estimate the model parameters via maximum likelihood 
with a log-likelihood function based on multi-variate normal. For this we need to have 

Pexpressions for the following quantities: EP [RṼ (`, M)], Var [RṼ (`, M)] andt0 t0 
P [ ˜ ˜Cov RV (`, M), RV (j, M)] for all j and all `.t0 

• In trying to compute these quantities, existing papers seem to make at least one assumption 
out of the following: 
(1) Assume continuously monitored (ie actually use the expressions for EP [RṼ (`, ∞)], etc); t0 

(2) Ignore drift; 
(3) Assume independence between Xt and Yt; 
(4) Assume continuous sample paths (i.e. Xt is actually Brownian motion). 

• We can compute these quantities without making any of these assumptions. 
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• Can compute EP [RṼ (`, M)] exactly for finite M using equation (1) (the formula for the pricet0 

of a discretely monitored variance swap). 
P• Can compute Var [RṼ (`, M)] via the fourth derivative of the joint extended characteristic t0 

function Φ(z; j). 
P [ ˜ ˜• Can compute Cov RV (`, M), RV (j, M)] for all j and all ` by considering an extendedt0 

S(tj) S(tk)characteristic function of the form EQ[exp(iz1 log + iz2 log )]t0 S(tj−1) S(tk−1) 

• But how much difference does it make (compared to making the four assumptions on the last 
slide: (1) Continuously monitored; (2) Ignore drift; (3) Independence between Xt and Yt; (4) 
Continuous sample paths)? 
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• Used same CGMY data as before. Values of the “C” parameters were normalised so that 
EP ˜[RV (`, ∞)] = 0.25, exactly. t0 

• EP ˜[RV (`, M)] expressed as an annualised volatility equivalent for different values of M .t0 

EP [RṼ (`, M)] Mt0 

0.250206 1 
0.250103 2 
0.250051 4 
0.250025 8 
0.250012 16 
0.250006 32 
0.250002 64 
0.250001 128 
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• Answer: It makes little difference. The theoretical value of EP [RṼ (`, M)] is very, very t0 

insensitive to M . 

• We saw that the drift and the correlation between Xt and Yt make very little difference to the 
price of a variance swap with, for example, daily monitoring. Its the same story with 
high-frequency data. 

• Conclusion: 
(1) Can assume continuously monitored (ie actually use the expressions for EP [RṼ (`, ∞)],t0 

etc); 
(2) Can ignore drift; 
(3) Little to be lost (for this estimation method) by assuming independence between Xt and 
Yt (because this estimation method cannot produce reliable non-zero estimates). 

• If worried about market microstructure effects, one can safely use a smaller value of M (for 
say M ≥ 15) - or even better (Ait-Sahalia (2005)), model market microstructure effects 
explicitly and find the optimal choice of M based on trading off more data against 
microstructure noise - not based on discrete monitoring effects. 
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• We cannot ignore jumps. We can show approximately 
0000 

−ψX (0) 00P PVar [RṼ (`, M)] ≈ + (ψX (0))
2Vart0 365 t0

[Y`M+m−1 − Y(`−1)M+m−1]. 

• The second term will be very small (eg 10−10 or 10−11) for realistic data. The first term 
(excess kurtosis) would be identically equal to zero for Brownian motion. In practice (based on 
high-frequency foreign exchange data in Barndorff-Nielsen and Shephard (2004)), the first 
term is of the order of one million times bigger than the second term. The Barndorff-Nielsen 

0000 
and Shephard data implies a value of −ψX (0) which is of the order of 0.08 to 0.8 (my CGMY 
data implies a value of 0.092 which is in the right ball-park). 
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• Generally speaking, discrete monitoring makes little difference to the prices of variance swaps 
and proportional variance swaps (in the paper, we show more or less the same story for 
self-quantoed variance swaps, gamma swaps and skewness swaps). This means they are also 
little affected by the value of Correl(Xt, Yt). 

• Jumps in the underlying dynamics make a lot of difference (there are more examples in the 
paper) - this is especially true with asymmetric jumps. 

• This motivates empirical studies which try to determine how much of the negative skewness 
seen in stock price returns (under P and Q) comes from a negatively skewed Lévy process and 
how much comes from a negative value of Correl(Xt, Yt) (the maximum likelihood method 
outlined earlier seems incapable of doing this). 

• The paper (“Variance derivatives: Pricing and convergence”) on which this talk is based will 
soon be on my website: 
http://www.john-crosby.co.uk . (or email me - address on website). 

http://www.john-crosby.co.uk
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